A monovalent cation acts as structural and catalytic cofactor in translational GTPases.
نویسندگان
چکیده
Translational GTPases are universally conserved GTP hydrolyzing enzymes, critical for fidelity and speed of ribosomal protein biosynthesis. Despite their central roles, the mechanisms of GTP-dependent conformational switching and GTP hydrolysis that govern the function of trGTPases remain poorly understood. Here, we provide biochemical and high-resolution structural evidence that eIF5B and aEF1A/EF-Tu bound to GTP or GTPγS coordinate a monovalent cation (M(+)) in their active site. Our data reveal that M(+) ions form constitutive components of the catalytic machinery in trGTPases acting as structural cofactor to stabilize the GTP-bound "on" state. Additionally, the M(+) ion provides a positive charge into the active site analogous to the arginine-finger in the Ras-RasGAP system indicating a similar role as catalytic element that stabilizes the transition state of the hydrolysis reaction. In sequence and structure, the coordination shell for the M(+) ion is, with exception of eIF2γ, highly conserved among trGTPases from bacteria to human. We therefore propose a universal mechanism of M(+)-dependent conformational switching and GTP hydrolysis among trGTPases with important consequences for the interpretation of available biochemical and structural data.
منابع مشابه
A Monovalent Cation Acts as Structural and Catalytic Cofactor in Translational
As you will see from the reports all three referees find your observations intriguing and would support publication of a revised manuscript in The EMBO Journal. However, while refs #1 and #3 raise only minor concerns, ref #2 points out a number of critical issues related to the catalytic rate and the essential role for M+ that would have to be fully and extensively addressed (including presenta...
متن کاملSaccharomyces cerevisiae Ski7 Is a GTP-Binding Protein Adopting the Characteristic Conformation of Active Translational GTPases
Ski7 is a cofactor of the cytoplasmic exosome in budding yeast, functioning in both mRNA turnover and non-stop decay (NSD), a surveillance pathway that degrades faulty mRNAs lacking a stop codon. The C-terminal region of Ski7 (Ski7C) shares overall sequence similarity with the translational GTPase (trGTPase) Hbs1, but whether Ski7 has retained the properties of a trGTPase is unclear. Here, we r...
متن کاملStructural characterization of a ribonuclease III processing signal.
The structure of a ribonuclease III processing signal from bacteriophage T7 was examined by NMR spectroscopy, optical melting, and chemical and enzymatic modification. A 41 nucleotide variant of the T7 R1.1 processing signal has two Watson-Crick base-paired helices separated by an internal loop, consistent with its predicted secondary structure. The internal loop is neither rigidly structured n...
متن کاملStructural roles of monovalent cations in the HDV ribozyme.
The hepatitis delta virus (HDV) ribozyme catalyzes viral RNA self-cleavage through general acid-base chemistry in which an active-site cytidine and at least one metal ion are involved. Monovalent metal ions support slow catalysis and were proposed to substitute for structural, but not catalytic, divalent metal ions in the RNA. To investigate the role of monovalent cations in ribozyme structure ...
متن کاملImportance in catalysis of a magnesium ion with very low affinity for a hammerhead ribozyme.
Available evidence suggests that Mg2+ ions are involved in reactions catalyzed by hammerhead ribozymes. However, the activity in the presence of exclusively monovalent ions led us to question whether divalent metal ions really function as catalysts when they are present. We investigated ribozyme activity in the presence of high levels of Mg2+ ions and the effects of Li+ ions in promoting ribozy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 33 21 شماره
صفحات -
تاریخ انتشار 2014